If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42=16t^2
We move all terms to the left:
42-(16t^2)=0
a = -16; b = 0; c = +42;
Δ = b2-4ac
Δ = 02-4·(-16)·42
Δ = 2688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2688}=\sqrt{64*42}=\sqrt{64}*\sqrt{42}=8\sqrt{42}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{42}}{2*-16}=\frac{0-8\sqrt{42}}{-32} =-\frac{8\sqrt{42}}{-32} =-\frac{\sqrt{42}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{42}}{2*-16}=\frac{0+8\sqrt{42}}{-32} =\frac{8\sqrt{42}}{-32} =\frac{\sqrt{42}}{-4} $
| -3x+6=4x+8 | | 5+.35x=2+.45x | | Y=60x+50.45=57.95 | | x=104/3 | | 2x+×/2=15.8 | | 9/17=7/2x | | 38.477-1.09x=2.7(x-7.9)+9.4x | | 30000=2w(w) | | 9y-8.5=8y+3.3 | | 5/2*b-5=1/2*b+1 | | 0.3=(x)^5 | | 0.3=(x)^10 | | 11+1/3(6-12x)=33 | | 0.3=x^2 | | x2–6x+9=25 | | 8=q+5 | | 7y2+14y=0 | | 3x-5=196 | | 40+39x+2+60=180 | | 0.3=(x)^25 | | 4/7v=8 | | 5×n=15+5 | | 21=6u-3u | | 3(3x-14)+x=15-(-9x-5) | | 0.1t+0.9(20-t)=6 | | 16v-14v=10 | | -63=4y-8y-15y | | 8(p-0.25)=4(2p)-0.5 | | -5x^2-3x-7=0 | | 7/10x=-2/5 | | 7/1x=-2/5 | | -.7t^2+42t=0 |